skip to main content


Search for: All records

Creators/Authors contains: "Kapovich, Ilya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inspired by results of Eskin and Mirzakhani (J Mod Dyn 5(1):71–105, 2011) counting closed geodesics of length at most L in the moduli space of a fixed closed surface, we consider a similar question in the Out(Fr) setting. The Eskin-Mirzakhani result can be equivalently stated in terms of counting the number of conjugacy classes (within the mapping class group) of pseudo-Anosovs whose dilatations have natural logarithm at most L. Let N(L) denote the number of Out(Fr)-conjugacy classes of fully irreducibles satisfying that the natural logarithm of their dilatation is at most L. We prove for r>2 that as L goes to infinity, the number N(L) has double exponential (in L) lower and upper bounds. These bounds reveal behavior not present in the surface setting or in classical hyperbolic dynamical systems. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Motivated by results about “untangling” closed curves on hyperbolic surfaces, Gupta and Kapovich introduced the primitivity and simplicity index functions for finitely generated free groups, [Formula: see text] and [Formula: see text], where [Formula: see text], and obtained some upper and lower bounds for these functions. In this paper, we study the behavior of the sequence [Formula: see text] as [Formula: see text]. Answering a question from [17], we prove that this sequence is unbounded and that for [Formula: see text], we have [Formula: see text]. By contrast, we show that for all [Formula: see text], one has [Formula: see text]. In addition to topological and group-theoretic arguments, number-theoretic considerations, particularly the use of asymptotic properties of the second Chebyshev function, turn out to play a key role in the proofs. 
    more » « less
  3. Abstract For a free group F r F_{r} of finite rank r ≥ 2 r\geq 2 and a non-trivial element w ∈ F r w\in F_{r} , the primitivity rank π ⁢ ( w ) \pi(w) is the smallest rank of a subgroup H ≤ F r H\leq F_{r} such that w ∈ H w\in H and 𝑤 is not primitive in 𝐻 (if no such 𝐻 exists, one puts π ⁢ ( w ) = ∞ \pi(w)=\infty ).The set of all subgroups of F r F_{r} of rank π ⁢ ( w ) \pi(w) containing 𝑤 as a non-primitive element is denoted by Crit ⁡ ( w ) \operatorname{Crit}(w) .These notions were introduced by Puder (2014).We prove that there exists an exponentially generic subset V ⊆ F r V\subseteq F_{r} such that, for every w ∈ V w\in V , we have π ⁢ ( w ) = r \pi(w)=r and Crit ⁡ ( w ) = { F r } \operatorname{Crit}(w)=\{F_{r}\} . 
    more » « less
  4. Abstract Motivated by the results of Scott and Patel about “untangling” closed geodesics in finite covers of hyperbolic surfaces, we introduce and study primitivity, simplicity and non-filling index functions for finitely generated free groups. We obtain lower bounds for these functions and relate these free group results back to the setting of hyperbolic surfaces. An appendix by Khalid Bou–Rabee connects the primitivity index function f prim ( n , F N ) to the residual finiteness growth function for F N . 
    more » « less
  5. We show that if a finitely generated group $G$ has a nonelementary WPD action on a hyperbolic metric space $X$ , then the number of $G$ -conjugacy classes of $X$ -loxodromic elements of $G$ coming from a ball of radius $R$ in the Cayley graph of $G$ grows exponentially in $R$ . As an application we prove that for $N\geq 3$ the number of distinct $\text{Out}(F_{N})$ -conjugacy classes of fully irreducible elements $\unicode[STIX]{x1D719}$ from an $R$ -ball in the Cayley graph of $\text{Out}(F_{N})$ with $\log \unicode[STIX]{x1D706}(\unicode[STIX]{x1D719})$ of the order of $R$ grows exponentially in $R$ . 
    more » « less